

Diversity in the IGH Locus of a South African Sub-Population

Alaine Marsden MSc (MED) Student

Supervised by Dr Cathrine Scheepers and Prof. Lynn Morris

Centre for HIV and STIs, National Institute for Communicable Diseases

Antibody Immunity Research Unit, University of the Witwatersrand

Johannesburg, South Africa

Division of the National Health Laboratory Service

The Immunoglobulin Heavy Chain (IGH) Locus

- → 1.5 MB in size
- → 200 genes many with multiple alleles
- → Contains all the genes that code for the heavy chain
- → One of the most polymorphic and complex loci in the human genome

Previous work

→ We have previously sequenced a portion of IGHV genes in 28 women from rural and urban KwaZulu Natal

• **48%** of observed alleles had never been described before

Scheepers, Cathrine, et al. 2015. "Ability To Develop Broadly Neutralizing HIV-1 Antibodies Is Not Restricted by the Germline Ig Gene Repertoire." *The Journal of Immunology* 194 (9).

Aim: To Investigate IGHV Polymorphism in a Larger Group

IGHV Next Gen Sequencing

Performed on MiSeq and PacBio across 70 participants

20.5%

Novel IGHV Allele Sequences

This was in addition to previous novel sequences

Types of Regulatory Variation

Mismatch

Regulatory region diversity

Diversity in regulatory regions was observed in **44.8%** of unique sequences

This may affect how antibodies are **secreted**

Aim: To Examine Copy Number Variation and Structural Diversity

The IGH locus exhibits structural variation

CNV caused by the rearrangement of the IGH locus leading to large indels

Common and Unreported IGHV Duplication

How do we resolve structural diversity?

- → Collaboration with Dr Corey Watson (University of Louisville)
- → Uses magnetic probes that isolate IGH fragments from sheared gDNA
- → Fragments (up to 8kb) are sequenced on PacBio
- → Locus is reconstructed computationally

Rodriguez, Oscar L., et al. 2020. "A Novel Framework for Characterizing Genomic Haplotype Diversity in the Human Immunoglobulin Heavy Chain Locus." *Frontiers in Immunology* 11: 2136..

IGH Capture revealed more genetic diversity

	CAP88	CAP255
Total SNVs	3235	3118
Intergenic	3116	3014
Coding	90	74
Regulatory	22	18
Total Indels	53	83
<50bp	45	69
>50bp	8	14

Haplotype reconstruction demonstrates structural diversity

Conclusions

- → We detected more novel alleles and provided full-length data for several IgPDb alleles.
- → Variation in the leader sequence was observed with frequent mismatch between different alleles.
- → CNV was a common event with novel duplication in 4 genes and broad structural differences between participants.
- → The phenotypic implications of this diversity in certain disease contexts are being currently investigated

Acknowledgments

Antibody Immunity Research Unit - NICD

- → Dr Cathrine Scheepers
- → Prof. Lynn Morris
- → Prof. Penny Moore
- → Dr Bronwen Lambson
- → Dr Arshad Ismail

Watson Lab - University of Louisville

- → Dr Corey Watson
- → Mr William Gibson
- → Dr Oscar Rodriguez

