

Avoid Thy Neighbor: Lessons from Successful LILRB1/LILRB2 Targeted Myeloid Suppression

Kalyani Mondal Charles River Laboratories Antibody Society Webinar October 17th, 2024

Integrated Drug Discovery & Development for Biologics

Large Molecule Lead Discovery Approaches at Charles River

Library	Cosmic™ (Naïve ScFv Library)	SuperHuman™ 2.0 (Naïve ScFv Library)	Tungsten™ (VHH Library)	SLiC™ Single Light Chain
Downstream Applications	IgG, scFv, CAR-X, BiTE	IgG, scFv, CAR-X , BiTE	VHH, CAR-X , Diagnostic	Bispecific/Multispecific antibodies
Overview/Key Attributes	 Our largest library: 100 billion unique sequences Fully human CDRs High diversity, manufacturability, non-immunogenicity 	 Fully human scFv display library: 76 billion unique sequences >90 projects completed/ongoing 	 Single domain libraries Humanized IGVH3-23 framework library >35 projects completed with 3 candidates in IND and beyond 	 A SH2.0-based single light chain library Enables rapid discovery & development of bi-specific antibodies with an IGKV1-39 fully germline light chain
Royalty-free				
Clone Exclusivity				
License for in- house use				

Streamlining Your Path to the Clinic

An efficient approach for integrated biologic discovery and development

Yeast Display Technology to Generate High Affinity Hits

Best of Both Worlds for In Vitro Display

- Utilize existing industry-leading phage technology
- Leverages power of flow cytometry to screen through millions of hits and select the highest-affinity binders

ANTI BODY SOCI

Yeast Display Complements and Enhances Our Phage Display Platforms

Specificity & Off-target Assessment using Retrogenix[®] Platform

Off-Target Assessment

Safety profiling to a final subset of clinical candidates using the Retrogenix[®] Cell Microarray Technology

Off-target/Specificity screening

- + Lead candidate selection filter out polyreactive candidates at earlier stage
- + IND-enabling specificity data support IND and BLA submissions to FDA, EMA etc.
- + Aid selection of (healthy) tissues for further *in vitro* safety assays

Receptor identification/ligand de-orphanization

+ Identify novel interactors for small and large molecules

Target deconvolution

+ Elucidate MOAs from phenotypic screens

Approximately Half of mAbs Have Off-Target Liabilities

133 mAbs and related molecules screened for a large pharmaceutical company

Assessing antibody specificity is a critical safety / de-risking step

Plenary Paper

CLINICAL TRIALS AND OBSERVATIONS

Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma

Gerald P. Linette,¹ Édward A. Stadtmauer,² Marcela V. Maus,⁹ Aaron P. Rapoport,⁹ Bruce L. Levine,⁸ Lyndsey Emery,⁷ Leslie Litzky,⁹ Adam Bagg,¹ Beatrit M. Cameno, ¹ Patrick J. Cimino, ¹ Gwandoyn K. Broker,²-Karld,¹ Domino P. Smethurs Andrew B. Gerry,⁴ Niek J. Pumptery, ⁴ Jan D. Bernett, ¹ Janne E. Bersert, ¹ Jange Dukas,¹ Jann Hurper,⁴ Helen K. Tayton-Martin,⁴ Bent K. Jakobsen,⁴⁵ Namir J. Hassan,⁶ Michael Kalos,² and Carl H. Jung⁴

Steams Career Genere and Department of Macrine and Proleining and Immunoga, Nashington University Strond of Macrines S. Lucis, NO. Xinourosci. Career Careere Department of Macrines, and Department of Prolotogical Alaboration, Macrines Macrines, Nashington, Linke Kingdom, Linke Kingdom, and Yino Greener Career. University of Macrines, MC: "Adaptionmuse List, Priladephia and Alengato, Linke Kingdom, and Namunocose List, Alabora, Linke Kingdom, Career Career, and Nashington, Linke Kingdom, and Namunocose List, Alabora, Linke Kingdom, Alaboration, MC: "Adaptionmuse List, Priladephia and Alengato, Linke Kingdom, and Namunocose List, Alabora, Linke Kingdom, Career of Macrines, Alaboration, Alaboratio, Alaboration, Alaboration, Alaboration,

Analysis of HER2 and HER4 in Human Myocardium to Clarify the Cardiotoxicity of Trastuzumab (Herceptin™)

Ilka B. Fuchs, Solveig Landt, Helmut Bueler, Uwe Kuehl, Sarah Coupland, Anke Kleine-Tebbe, Werner Lichtenegger & Gerhard Schaller

Breast Cancer Research and Treatment 82, 23-28 (2003) Cite this article

Original Paper | Published: 07 May 2014

Do current the rapeutic anti-A β antibodies for Alzheimer's disease engage the target?

Andrew D. Watt. Gabriela A. N. Crespi, Russell A. Down, David B. Ascher, Adam Gunn, Keyla A. Perez, Catriona A. McLean, Victor L. Villemagne, Michael W. Parker, Kevin J. Barnham 🖾 & Luke A. Miles

Acta Neuropathologica 127, 803-810 (2014) Cite this article

Molecular basis for mid-region amyloid- β capture by leading Alzheimer's disease immunotherapies

Gabriela A. N. Crespi¹, Stefan J. Hermans¹, Michael W. Parker^{1,2} & Luke A. Miles^{1,2}

¹ ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fizzroy, Victoria 3065, Australia, ²Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.

Review

Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers

Nishant Mohan, Jiangsong Jiang, Milos Dokmanovic and Wen Jin Wu* Division of Biotechnology Review and Research 1. Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20090, USA

Antibody Therapeutics, 2018, Vol. 1, No. 1 13–17 doi:10.1093/ab/th/y003 Advance Access Publication on 10 August 2018

Early Off-Target Assessment Using Periplasmic Extract

Rapid Assessment of Up to 96 PPE Against ~300 Frequently Hit Off-targets

- Anti-SIRPα ScFv clones showed binding to only SIRP family members, which is expected based on the panning strategy.
- A well behaved anti-Her2 was included as a negative control and showed binding to its specific target antigen.
- The same clones as mAbs showed higher sensitivity due to crosslinking with the expressed proteins.
- When reformatted to IgGs: no poly-reactivity against ~300 off-targets tested, except for PO2_D01.

In Vitro Functionality

In Vitro Functionality

Mechanism of Action

Therapeutic effects of antibodies can be mediated by several mechanisms

- Activation or inhibition of enzyme activity
- Activation or inhibition of signaling pathways
- Biochemical characterization of inhibition of ligand binding (IC₅₀)
- Direct target cell killing (apoptosis)
- Antibody-dependent cellular cytotoxicity (ADCC)
- Antibody-dependent cellular phagocytosis (ADCP) Effector functions
- Complement-dependent cytotoxicity (CDC)

ADCC mediated by NK cells determined via flow cytometry (24h coculture A-431:NK cells)

2D & 3D Tumor Cell Killing Assay

Building greater physiological relevance in tumor kill assays

charles river

SuperHuman™ Library Overview

SuperHuman 2.0[™]: An NGS Informed Smart Phage Library

Drug worthy Frameworks

VK1-39	VH1-46
VK2-28	VH1-69
VK3-15	VH3-15
VK4-1	VH3-23

Optimizing the Repertoire

- First-generation natural naive libraries were highly redundant, resulting in relatively few hits and relatively weak binders.
- Synthetic libraries had greater sequence diversity but suffered from low "molecular fitness": synthetic clones that tended to not fold, to aggregate, and to be non-specific.
- SH2.0[™]: Through a combination of careful framework selection, using only human CDRs, thermal and expression selection pressures during construction, the library is engineered for enhanced thermostability, low immunogenicity, low aggregation.

100% 90% SuperHuman-2.0 Percentage of library occupied by top clones 80% PNAS-2009-scFv Human-naïve 70% Human-memory 60% 50% 40% 30% 20% 10% 0% 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 Most abundant VH clones, ranked by frequency

High Sequence Diversity

 No single clone is more than 0.03% of the total 76B member library

Glanville, G. et al. (2009) Proc. Natl. Acad. Sci. 106, 20216-20221 Zhai, W. et al (20111) J. Mol. Biol. 412, 55-71

SH2.0™ Outputs from Discovery Campaigns

• Over 178 binders grouped into 21 epitope bins

Successful Application of SuperHuman 2.0[™] Across Many Disease Indications

- SuperHuman (SH2.0[™]) released in 2017. It is the most utilized, hence also the preferred library amongst our clients.
- Over 90 projects completed or ongoing.

Application Across Different Disease Indications

• Other disease indications (26%) include pain, neurodegeneration, rare disorder.

Application Across Challenging Targets

• Other targets (13%) include small molecules, adhesion molecules, viral proteins/peptides, intracellular proteins

LILRB1/LILRB2 as Innate Immune Checkpoint Inhibitors

Overview

٠

- Immune checkpoint blockade in T cells using antibodies has demonstrated clinical efficacy in different types of cancer.
- Beside T cells, innate immune cells (i.e., NK cells and macrophages) exert a pivotal role in the recognition and elimination of malignant cells in the tumor microenvironment.
- Inhibition of the innate immune system to disrupt "Don't Eat Me" signals between tumor and macrophages is a rapidly growing area of drug development.
- LILRB1 and LILRB2 are two such immunomodulatory receptors
- LILRB1, LILRB2 (receptor) and HLA-G (ligand) are immune checkpoint factors that play a significant role in human immunosuppressive pathways
- 50% 70% of malignant growth use HLA-G as a shield to disrupt the patient's immune system's from functionally normally.

Figures@Biorender.com

Chen et al. (2018) *J Clin Invest.*, <u>128(12)</u>:5647-5662 Yang, H et al. (2019) *Cancer Med. 8*, 4245-4253

Clinical Antibodies Targeting LILRB1/LILRB2

Antibody	Target	Disease	Intervention	Phase	clinical trial.gov ID
BND-22/SAR444881 (Biond Biologics/Sanofi)	LILRB1	Advanced solid tumor	BND-22 alone BND-22+ Pembro BND-22+Cetuximab	I/II	NCT04717375
NGM707 (NGM Biopharmaceuticals)	LILRB1 LILRB2	Advanced solid tumor	NGM707 alone NGM707+Pembro	I/II	NCT04913337
AGEN1571 (Agenus)	LILRB1 LILRB2	Advanced solid tumor	AGEN1571 alone AGEN1571 + anti-PD-1 AGEN1571 + anti-CTLA-4	Ι	NCT05377528

Antibody	Target	Disease	Intervention	Phase	clinical trial.gov ID
MK-4830 (Merck)	LILRB2	Advanced solid tumor	MK4830 alone MK4830+Pembro	Ι	NCT03564691
JTX-8064 (Jounce therapeutics)	LILRB2	Advanced refractory solid tumor	JTX-8064 alone JTX-8064+Anti- PD1	I/II	NCT04669899
BMS-986406 (Bristol Myers-Squibb)	LILRB2	Advanced malignant tumors	BMS-986406 alone BMS986406+Nivo+Car boplatin	Ι	NCT05298592
CDX-585 (Celldex Therapeutics)	LILRB2/PD-1 bispecific	Advanced malignancies	CDX-585 alone	Ι	NCT05788484

Zeller, T. et al. (2023) *Frontiers Immunol*. 10.3389/fimmu.2023.1240275 Clinical Trials.gov

LIR Protein Family

Identity Matrix (%)								
	<u>B1</u>	B2	B3	A1	A2	A 3	A6	
B1	100	84	72	77	74	84	64	
B2	84	100	71	78	73	80	64	
В3	72	71	100	65	64	66	90	
A1	77	78	65	100	81	85	68	
A2	74	73	64	81	100	82	68	
A 3	84	80	66	85	82	100	66	
A 6	64	64	90	68	68	66	100	

Figures@Biorender.com

- LIR are grouped into two subfamilies:
 - **Subfamily A** consists of LILRA1, LILRA2, LILRA4-6 (cell surface receptors) that activate via their ITAM domain and the soluble member LILRA3.
 - **Subfamily B** consists of LILRB1-5, which inhibit via their ITIM domain.
- Targeting LILRB1 & LILRB2 poses the challenge of avoiding ten highly homologous LILR family members that are also expressed on myeloid cells.

Clinical Anti-LILRB1 Antibody (15G8) Cross-Family Binding Profile

• First generation anti-LILRB1 antibody shows high affinity binding to human LILRB1 and cyno cross-reactivity, but also bind to other LILR family members with a range of affinities.

LILRB1 Antibody Discovery at Charles River

Goals for LILRB1 Discovery Campaign

Project Goals:

- Target: Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1; Uniprot ID: Q8NHL6)
- Human-cyno cross reactivity preferred
- Off-target selectivity: LILRB2, LILRB3, LILRB4, LILRB5, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6
- Desired Function: Specific binding to LILRB1 with blocking of HLA-A and HLA-G binding
- Final Format: IgG4
- For use in therapeutic applications

LILRB1 Workflow

Library	Panning Arm	Goal	R1	Competition	R2	Competition	R2 Off-target Deselection	R3	Competition	R3 Off-target Deselection	R4	Competition	R4 Off-target Deselection
SH 2.0	A	To find scFv binders to Human LILRB1 ECD that do not cross to LILRB2	HuLILRB1 ECD	None	HuLILRB1 ECD	HuLILRB1 ECD His	HuLILRB2	HuLILRB1 ECD	HuLILRB1 ECD His	HuLILRB2	HuLILRB1 ECD	HuLILRB1 ECD-His	HuLILRB2
SH 2.0	в	To find human/cyno cross-binders with deselections to all LILR family members	HuLILRB1 ECD	None	CyLILRB1 ECD	None	LILRA1-6, LILRB2-5 proteins	CyLILRB1 ECD	None	LILRA1-6, LILRB2-5 proteins	HuLILRB1 ECD	HuLILRB1 ECD-His	LILRA1-6, LILRB2-5 proteins
SH 2.0	c	To find ligand blockers that cross with cyno with deselections to LILRB2, LILRA1, LILRA3	HuLILRB1 D1-D2 Domain	None	CyLILRB1 ECD	None	LILRB2, LILRA1, LILRA3	CyLILRB1 ECD	None	LILRB2, LILRA1, LILRA3	HuLILRB1 D1-D2 Domain	None	LILRB2, LILRA1, LILRA3

Panning Schema

• Wide range of CDRH3 lengths observed

• Combination of enriched and singleton clones after 4 rounds of panning

LILRB1 ScFv Screening Workflow

HT LILRA & LILRB Family Cross-Reactivity

15G8 ScFv (positive control) S/N>50 Negative control ScFvs S/N<2

- 153 unique clones that showed binding to D1-D2 domain and FL LILRB1 ECD.
- 18 unique clones that showed binding to D1-D2, human &cyno LILRB1 ECD.

• 194 of 672 screened unique clones showed no cross-reactivity to LILRB₂₋₅ family members.

15G8 ScFv (positive control) S/N>50 for LILRA₁₋₃ Negative control ScFvs S/N<2

• 101 unique clones showed no crossreactivity to LILRA & LILRB family members.

Secondary Screening Characterizations

Affinity/Ligand Blocking/FACS Binding of ScFvs from Periplasmic Extract

Isoaffinity Plot of all Cell Binders

• Several clones show higher affinity than the positive control, a few $K_D s \sim nM$ range

Positive control Novel clone

FACS Screen with PPE

 ~30 clones showed MFI fold> positive control ScFV

Octet Based HLA-G Blocking Assay

HLA-G tetramer blocking Anti-His non-blocking Buffer

Example of Clones with No Cross-Family Cross-reactivity

Example of Clones with Cyno Cross-reactivity

Introduction of Binding Interaction to 1/10 Cross-Family Members

Hu LILRB1; K_D, 268nM Cyno LILRB1; K_D, 179nM

Hu LILRB1; K_D, 23nM Cyno LILRB1; K_D, 48nM Hu LILRA3; K_D, 116nM

Hu LILRB1-His Cyno LILRB1-His Hu LILRB2-His Hu LILRA1-His Hu LILRA2-His Hu LILRA3-His

Hu LILRB1; K_D , 65nM Cyno LILRB1; K_D , 74nM Hu LILRA1; K_D , 120nM

HLA-G tetramer blocking Anti-His non-blocking Buffer

Probable Rationale for Cyno & Cross-Family Binding

Alignment of Ligand Binding Domains

****** ***

cyno	PKP <mark>M</mark> LWAEP <mark>DR</mark> VITQGSPVTL <mark>R</mark> CQG <mark>NL</mark> EALG <mark>YH</mark> LYRE <mark>R</mark> K <mark>SAS</mark> WIT <mark>SIRP</mark> ELV <mark>R</mark> KGQFPIP	60	
LILRB1	PKPTLWAEPGSVITQGSPVTLRCQG <mark>GQ</mark> ETQEYRLYREKKTALWITRIPQELVKKGQFPIP	60	Identity Matrix (%)
LILRA1	PKPTLWAEPGSVITQGSPVTLWCQG IL ETQEYRLYREKKTAPWITRIPQEIVKKGQFPIP	60	
LILRA3	PKPTLWAEPGSVITQGSPVTLRCQG SL ETQEYHLYREKKTALWITRIPQELVKKGQFPIL	60	Cyno B1 A1 A3
	*** ***** ******** *** *: *:***********		Cyno 100 79 79 81
			B1 79 100 87 88
cyno	SITWE <mark>D</mark> AGRYRC <mark>Q</mark> Y <mark>YSHS-WW</mark> SE <mark>H</mark> SDPLELVVTGAY <mark>S</mark> KPTLSA <mark>L</mark> PSPVV <mark>A</mark> SGGNV <mark>T</mark> LQCD	119	
LILRB1	SITWEHAGRYRC <mark>Y</mark> YGSDTAGRSESSDPLELVVTGAYIKPTLSAQPSPVV <mark>N</mark> SGGNVILQCD	120	A1 79 79 100 85
LILRA1	SITWEHTGRYRC F YGSHTAGWSEPSDPLELVVTGAYIKPTLSALPSPVV T SGGNVTLHCV	120	A3 81 88 85 100
LILRA3	SITWEHAGRYCCIYGSHTAGLSESSDPLELVVTGAYSKPTLSALPSPVVTSGGNVTIQCD	120	
cyno LILRB1 LILRA1	****** **** * * * * * * * * * ********	179 180 180	AA different between cyno & human B1 AA different between cyno/hu B1/huA1/huA3
LILRA3	SQVAFDGFILCKEGEDEHPQCLNSHSHARGSSRAIFSVGPVSPSRRWSYRCYGYDSRAPY *:**** ******** *****: :::* ***:********	180	
cyno	<mark>V</mark> WSLPSDLLELLVS- 193		
LILRB1	EWSLPSDLLELLVL- 194		
LILRA1	VWSLPSDLLELLVL 194		
LILRA3	VWSLPSDLLGLLVP- 194		

• High sequence identity (~80%) between cyno and human LILRB1, LILRA1, LILRA3 makes it challenging to ensure cyno cross-reactivity while avoiding off-target binding.

Probable Rationale for Avoidance of Cross-Family Binding

Alignment of Ligand Binding Domains

LILRB1	PKPTLWAEPGSVITQGSPVTL <mark>R</mark> CQG <mark>GQ</mark> ETQEY <mark>R</mark> LYF	REKKTA <mark>L</mark> WITRIPQE <mark>L</mark> VKKGQFPI <mark>P</mark>	60	Identity Matrix (%)
LILRA1	PKPTLWAEPGSVITQGSPVTLWCQG IL ETQEYRLYF	REKKTAPWITRIPQEIVKKGQFPIP	60	B1 A1 A3
LILRA3	PKPTLWAEPGSVITQGSPVTLRCQG SL ETQEYHLYF	REKKTALWITRIPQELVKKGQFPIL	60	B1 100 87 88
	***************************************	***** *****************		
				A1 87 100 85
LILRB1	SITWEH <mark>A</mark> GRY <mark>R</mark> C <mark>Y</mark> YGS <mark>D</mark> TAG <mark>R</mark> SE <mark>S</mark> SDPLELVVTGAY	(<mark>I</mark> KPTLSA <mark>Q</mark> PSPVV <mark>N</mark> SGGNV <mark>ILQ</mark> C <mark>D</mark>	120	A3 88 85 100
LILRA1	SITWEHTGRYRCFYGSHTAGWSEPSDPLELVVTGAY	IKPTLSALPSPVVTSGGNVTLHCV	120	
LILRA3	SITWEHAGRYCCIYGSHTAGLSESSDPLELVVTGAY	SKPTLSALPSPVVTSGGNVTIQCD	120	
	*****	* ***** *****		
LILRB1	SQVAF <mark>DG</mark> F <mark>S</mark> LCKEGEDEHPQCLNS <mark>QPHAR</mark> G <mark>S</mark> SRAIF	SVGPVSPSRRW <mark>W</mark> YRCY <mark>A</mark> YDS <mark>NS</mark> P <mark>Y</mark>	180	
LILRA1	SQVAFGSFILCKEGEDEHPQCLNSQPRTHGWSRAIE	SVGPVSPSRRW S YRCYAYDSNSPH	180	
LILRA3	SQVAFDGF I LCKEGEDEHPQCLNSHSHARGSSRAIE	SVGPVSPSRRW S YRCYGYDSRAPY	180	
	****** ******************************	********** **** ****		
LILRB1	EWSLPSDLLELLVL- 194	—		a
LILRA1	VWSLPSDLLELLVL- 194	AA common between human B	1 and at least one of th	e off-targets
LILRA3	VWSLPSDLLGLLVP- 194	AA different between hu B1/hu	A1/huA3	

• Even though there exists high sequence identity (≥85%) between human LILRB1, LILRA1 & LILRA3, several AAs are different between the 3 proteins in the ligand binding D1-D2 domain to help avoid cross-family binding.

Summary of LILRB1 Discovery Campaign

- SH2.0[™] was successfully applied in discovery of several anti-LILRB1 clones that showed improved off-target binding profile than a first-generation antibody that is currently in clinic.
- The data highlights the advantage of utilizing a large and diverse naïve ScFv library in combination with a well-designed panning strategy to identify multiple anti-LILRB1 antibodies that show low/no cross-reactivity to other LILR family members.
- Screening hundreds of antibody hits for multiple off-target binding can be laborious and time consuming.
- Here, we discussed the different screening methodologies applied to overcome these challenges.
- This includes utilizing automated HT screens to assess >8700 interactions within a day and complementing this with more rigorous cell-based functional characterizations.

LILRB2 Antibody Discovery at Charles River

Goals for LILRB2 Discovery Campaign

Project Goals:

- Target: Leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2; Uniprot ID: Q8N423)
- Human only binders a priority; Human-cyno cross reactivity is nice-to-have
- Off-target selectivity: LILRB2, LILRB3, LILRB4, LILRB5, LILRA1, LILRA2, LILRA3, LILRA4, LILRA5, LILRA6
- Desired Function: Specific binding to LILRB2 with blocking of HLA-G binding
- Final Format: IgG4
- For use in therapeutic applications

LILRB2 Workflow

Blockade of LILRB2 and HLA-G Binding

Figures@Biorender.com

- 15 IgGs screened
- Data Courtesy, Joshua Royal, KBio
- KB16A.41.2 appear to have robust HLA-G blocking

Cell-Based Binding Specificity

Off-target flow cytometric analysis of mAb binding to LILR-expressing HEK293T cells

• Several mAbs showed low/no binding to LILRAs and LILRBs including KB16A.41.2

Cell Based Binding

Flow cytometric analysis of mAb binding to LILRB2-expressing HEK293T cells

Human Cell-Based Functional Assay

- 1. LILRB2-expressing human monocyte produces inflammatory cytokine TNF in response to stimulus (LPS, bacterial cell wall component)
- 2. HLA-G-expressing tumour cells would engage the LILRB2 and suppress the monocytes, reducing TNF production
- 3. Blockade antibodies would bind to LILRB2 and prevent the suppressive activity

Figures@Biorender.com

Co-culture Assay of Stimulated Monocytes with HLA-G -Expressing JEG-3 cells

Figures@Biorender.com

LILRB2 Antagonism Activates Macrophages

Figures@Biorender.com

Chen et al., J Clin Invest. 2018;128(12):5647-5662.

Xenograft Model in HuHSC-NOG EXL Mice - Ongoing

Conclusions

- A rational and successful approach for specific targeting of LILRB1 and LILRB2 was discussed.
- Avoiding highly homologous LILR family members that are also expressed on myeloid cells can be challenging.
- The diversity of SH2.0[™] naïve ScFv library in combination with a well-designed panning strategy helped identify multiple anti-LILRB1 and anti-LILRB2 antibodies with strong binding specificity.
- Anti-LILRB2 mAbs were shown to functionally antagonize LILRB2 on macrophages
 - + LILRB2 mAbs prevent HLA-G-induced immunosuppressive pathways
 - + LILRB2 mAbs polarized macrophages cells towards inflammatory phenotype
- Next Steps for anti-LILRB2 [KBio]: POC In Vivo Efficacy Studies
 - + POC *In vivo* efficacy study of anti-LILRB2 antibodies in the treatment of subcutaneous HLA-G overexpressing melanoma cells in HuHSC-NOG EXL xenograft model (on-going)
 - + Lead optimization and mAb (LILRB2, HLA-G, PD-L1 mAbs) combinational studies
- Next Steps for anti-LILRB1: Optimization/engineering to improve human/cyno LILRB1 affinity or reduce affinity to LILRA1/LILRA3.
- The lessons learned here are broadly applicable to next-generation immune checkpoint inhibitors that require recognizing multiple isoforms or necessitate avoidance of multiple close family members for effective immunotherapy.

Acknowledgements

- Heranova Biosciences
- Joshua Royal, KBio Inc
- Janice Reichert, Antibody Society
- Charles River Laboratories
- Renny Feldman

- Samuel Hui
- Xiaoxiao Zhang
- Aishwarya Kanchi Ranganath
- Kyle Gruber
- Thomas Keller

Thank you!

Contact us: 1-877-CRIVER-1 askcharlesriver@crl.com

www.criver.com/antibodies

